What did the Hubble Telescope discover about creation and evolution of galaxies?

It has shown us tremendous new places such as The Eagle Nebula. Also called The Pillars of Creation," where stars are born! This lets us study where stellar nurseries are and what happens in them. How gasses collapse, form and stellar fusion begins.

http://en.wikipedia.org/wiki/Eagle_Nebula


Hubble Space Telescope (HST)
http://en.wikipedia.org/wiki/Hubble_Space_Telescope

Important discoveries

Hubble has helped to resolve some long-standing problems in astronomy, as well as turning up results that have required new theories to explain them. Among its primary mission targets was to measure distances to Cepheid variable stars more accurately than ever before, and thus constrain the value of the Hubble constant, the measure of the rate at which the universe is expanding, which is also related to its age. Before the launch of HST, estimates of the Hubble constant typically had errors of up to 50%, but Hubble measurements of Cepheid variables in the Virgo Cluster and other distant galaxy clusters provided a measured value with an accuracy of ±10%, which is consistent with other more accurate measurements made since Hubble's launch using other techniques.

While Hubble helped to refine estimates of the age of the universe, it also cast doubt on theories about its future. Astronomers from the High-z Supernova Search Team and the Supernova Cosmology Project used the telescope to observe distant supernovae and uncovered evidence that, far from decelerating under the influence of gravity, the expansion of the universe may in fact be accelerating. This acceleration was later measured more accurately, confirming Hubble's finding.

The high-resolution spectra and images provided by the HST have been especially well-suited to establishing the prevalence of black holes in the nuclei of nearby galaxies. While it had been hypothesized in the early 1960s that black holes would be found at the centers of some galaxies, it fell to work conducted with Hubble to show that black holes are probably common to the centers of all galaxies.

Comet Shoemaker-Levy 9

The collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 was fortuitously timed for astronomers, coming just a few months after Servicing Mission 1 had restored Hubble's optical performance. Hubble images of the planet were sharper than any taken since the passage of Voyager 2 in 1979, and were crucial in studying the dynamics of the collision of a comet with Jupiter, an event believed to occur once every few centuries.

Other major discoveries made using Hubble data include proto-planetary disks (proplyds) in the Orion Nebula; evidence for the presence of extrasolar planets around sun-like stars; and the optical counterparts of the still-mysterious gamma ray bursts. HST has also been used to study objects in the outer reaches of the Solar System, including the dwarf planets Pluto and Eris.

Hubble Deep Field and Hubble Ultra Deep Field

A unique legacy of Hubble are the Hubble Deep Field and Hubble Ultra Deep Field images, which utilized Hubble's unmatched sensitivity at visible wavelengths to create images of small patches of sky that are the deepest ever obtained at optical wavelengths. The images reveal galaxies billions of light years away, and have generated a wealth of scientific papers, providing a new window on the early Universe.

The non-standard object SCP 06F6 was discovered by the Hubble Space Telescope (HST) in February 2006.

Impact on astronomy

Over 9,000 papers based on Hubble data have been published in peer-reviewed journals, and countless more have appeared in conference proceedings. On average, a paper based on Hubble data receives about twice as many citations as papers based on non-Hubble data. Of the 200 papers published each year that receive the most citations, about 10% are based on Hubble data.

Although the HST has clearly had a significant impact on astronomical research, the financial cost of this impact has been large. A study on the relative impacts on astronomy of different sizes of telescopes found that while papers based on HST data generate 15 times as many citations as a 4 m ground-based telescope such as the William Herschel Telescope, the HST costs about 100 times as much to build and maintain.

Making the decision between investing in ground-based versus space-based telescopes in the future is complex. In the visible bands, adaptive optics can only correct a relatively small field of view, whereas HST can conduct high-resolution optical imaging over a wide field. Only a small fraction of astronomical objects are accessible to high-resolution ground-based imaging; in contrast Hubble can perform high-resolution observations of any part of the night sky, and on objects that are extremely faint.
 
Back
Top