summarize the aerobic stages of cellular respiration and discuss the krebs cycle and?

Mari

New member
the electron transport chain respiration and discuss the and the electron transport chain transport chain is the rest of the question please help by answering in the shortest way possible thanks for the help
 
Stages
Glycolysis
Oxidative decarboxylation of pyruvate
Citric acid cycle ( kreb's cycle )
Oxidative phosphorylation

CITRIC ACID CYCLE
This is also called the Krebs cycle or the tricarboxylic acid cycle. When oxygen is present, acetyl-CoA is produced from the pyruvate molecules created from glycolysis. Once acetyl-CoA is formed, two processes can occur, aerobic or anaerobic respiration. When oxygen is present, the mitochondria will undergo aerobic respiration which leads to the Krebs cycle. However, if oxygen is not present, fermentation of the pyruvate molecule will occur. In the presence of oxygen, when acetyl-CoA is produced, the molecule then enters the citric acid cycle (Krebs cycle) inside the mitochondrial matrix, and gets oxidized to CO2 while at the same time reducing NAD to NADH. NADH can be used by the electron transport chain to create further ATP as part of oxidative phosphorylation. To fully oxidize the equivalent of one glucose molecule, two acetyl-CoA must be metabolized by the Krebs cycle. Two waste products, H2O and CO2, are created during this cycle.

The citric acid cycle is an 8-step process involving 8 different enzymes. Throughout the entire cycle, acetyl-CoA changes into citrate, isocitrate, α-ketoglutarate, succinyl-CoA, succinate, fumarate, malate, and finally, oxaloacetate. The net energy gain from one cycle is 3 NADH, 1 FADH, and 1 ATP. Thus, the total amount of energy yield from one whole glucose molecule (2 pyruvate molecules) is 6 NADH, 2 FADH, and 2 ATP.

ELECTRON TRANSPORT CHAIN REACTION
The majority of the energy conserved during catabolism reactions occurs near the end of the metabolic series of reactions in the electron transport chain. The electron transport or respiratory chain gets its name from the fact electrons are transported to meet up with oxygen from respiration at the end of the chain. The overall electron chain transport reaction is:
2 H+ + 2 e+ + 1/2 O2 ---> H2O + energy
Notice that 2 hydrogen ions, 2 electrons, and an oxygen molecule react to form as a product water with energy released in an exothermic reaction. This relatively straight forward reaction actually requires eight or more steps. The energy released is coupled with the formation of three ATP molecules per every use of the electron transport chain.
 
Back
Top