Mar. 20, 2013 — In the early 1950's, a 66-year-old woman, sick with colon cancer, received a blood transfusion. Then, unexpectedly, she suffered a severe rejection of the transfused blood. Reporting on her case, the French medical journal Revue D'Hématologie identified her as, simply, "Patient Vel."
Share This:
See Also:
After a previous transfusion, it turns out, Mrs. Vel had developed a potent antibody against some unknown molecule found on the red blood cells of most people in the world -- but not found on her own red blood cells.
But what was this molecule? Nobody could find it. A blood mystery began, and, from her case, a new blood type, "Vel-negative," was described in 1952.
Soon it was discovered that Mrs. Vel was not alone. Though rare, it is estimated now that over 200,000 people in Europe and a similar number in North America are Vel-negative, about 1 in 2,500.
For these people, successive blood transfusions could easily turn to kidney failure and death. So, for sixty years, doctors and researchers have hunted -- unsuccessfully -- for the underlying cause of this blood type.
But now a team of scientists from the University of Vermont and France has found the missing molecule -- a tiny protein called SMIM1 -- and the mystery is solved.
Reporting in the journal EMBO Molecular Medicine, UVM's Bryan Ballif, Lionel Arnaud of the French National Institute of Blood Transfusion, and their colleagues explain how they uncovered the biochemical and genetic basis of Vel-negative blood.
"Our findings promise to provide immediate assistance to health-care professionals should they encounter this rare but vexing blood type," says Ballif.
The pre-publication results were presented online, March 18, 2013, and the finalized report will be published, as an open-access article, in the next edition of the journal.
(Last year, Ballif and Arnaud identified the proteins responsible for two other rare blood types, Junior and Langeris, moving the global count of understood blood types or systems from 30 to 32. Now, with Vel, the number rises to 33.) New DNA tests
Before this new research, the only way to determine if someone was Vel-negative or positive was with tests using antibodies made by the few people previously identified as Vel-negative following their rejection of transfused blood. Not surprisingly, these antibodies are vanishingly rare and, therefore, many hospitals and blood banks don't have the capacity to test for this blood type.
"Vel- blood is one of the most difficult blood types to supply in many countries," the scientists write, "This is partly due to the rarity of the Vel
Share This:
See Also:
After a previous transfusion, it turns out, Mrs. Vel had developed a potent antibody against some unknown molecule found on the red blood cells of most people in the world -- but not found on her own red blood cells.
But what was this molecule? Nobody could find it. A blood mystery began, and, from her case, a new blood type, "Vel-negative," was described in 1952.
Soon it was discovered that Mrs. Vel was not alone. Though rare, it is estimated now that over 200,000 people in Europe and a similar number in North America are Vel-negative, about 1 in 2,500.
For these people, successive blood transfusions could easily turn to kidney failure and death. So, for sixty years, doctors and researchers have hunted -- unsuccessfully -- for the underlying cause of this blood type.
But now a team of scientists from the University of Vermont and France has found the missing molecule -- a tiny protein called SMIM1 -- and the mystery is solved.
Reporting in the journal EMBO Molecular Medicine, UVM's Bryan Ballif, Lionel Arnaud of the French National Institute of Blood Transfusion, and their colleagues explain how they uncovered the biochemical and genetic basis of Vel-negative blood.
"Our findings promise to provide immediate assistance to health-care professionals should they encounter this rare but vexing blood type," says Ballif.
The pre-publication results were presented online, March 18, 2013, and the finalized report will be published, as an open-access article, in the next edition of the journal.
(Last year, Ballif and Arnaud identified the proteins responsible for two other rare blood types, Junior and Langeris, moving the global count of understood blood types or systems from 30 to 32. Now, with Vel, the number rises to 33.) New DNA tests
Before this new research, the only way to determine if someone was Vel-negative or positive was with tests using antibodies made by the few people previously identified as Vel-negative following their rejection of transfused blood. Not surprisingly, these antibodies are vanishingly rare and, therefore, many hospitals and blood banks don't have the capacity to test for this blood type.
"Vel- blood is one of the most difficult blood types to supply in many countries," the scientists write, "This is partly due to the rarity of the Vel